Quarkonia measurement in p+p and d+Au collisions at \sqrt{s} =200 GeV by PHENIX Detector. Cesar Luiz da Silva^a for the PHENIX Collaboration ^a Iowa State University 510C Brookhaven National Lab, Upton/NY 117973 - U.S.A. Contact e-mail: slash@bnl.qov Charmonium suppression in hot and dense nuclear matter has been argued to be a unique signature for the production of the quark gluon plasma (QGP). In order to search for this effect in heavy ion collisions one must have a clear understanding of quarkonia production and the modifications present in their spectrum resulting from the interaction with normal cold nuclear matter. The PHENIX experiment has measured J/ψ 's spectra from deuterongold (d+Au) interactions at $\sqrt{(s)}$ =200GeV and compared these with a new proton-proton baseline (2006 RHIC run) in order to constrain these cold nuclear matter effects. For p+p collisions we will present the transverse momentum dependence of the J/ψ yield for the higher integrated luminosity, a new ψ' spectrum, J/ψ polarization and the latest status of searches for other quarkonium states (χ_c and Υ). We will also report the status of the analysis from the d+Au 2008 RHIC run, with an integrated luminosity of 80 nb⁻¹, compared to the 2.4 nb⁻¹ collected in the 2003 RHIC run.